On this page, I systematically explore the geometric differential
representation of rotations in minkowski spacetime. Rotations are first
expressed as linear combination of rotation planes with bivectors. The dual
differential 2-forms are then derived, as well as the mixed tensor
representation in form of matrices.
We work out the Lie algebra of the Lorentz group as well as the full matrix
representation of rotations. The mixed wedge products are fully expressed in
terms of tensor products and their symmetries highlighted.
General rotations can be expressed as linear combinations of rotations in each
planes. For Minkowski space with 4 dimensions, this result in 6 planes of
rotations. Each plance is expressed as the wedge product \(∧\) of basis
vectors as \(∂_x ∧ ∂_y\). A rotation in spacetime is represented by the
linear combination of all basis rotations in all six available planes.
The sharp symbol \(\sharp\) indicates that the components are doubly
contravariant tensor components. Using the antisymmetric property of the
exterior product \(∂_μ ∧ ∂_ν = - ∂_ν ∧ ∂_μ\), all terms can be rewritten as
\(∂_μ ∧ ∂_ν = \frac{1}{2}( ∂_μ ∧ ∂_ν - ∂_ν ∧ ∂_μ)\):
To obtain the doubly covariant representation of rotations in spacetime, we
apply the flat operators \(♭♭\) to each components \(R^{♭♭} =
(R^{♯♯})^{♭♭}\):
Calculations
Apply the flat operators
\[\begin{split}R^{♭♭} = \begin{bmatrix}
a \; ∂_t ∧ ∂_x \\
b \; ∂_t ∧ ∂_y \\
c \; ∂_t ∧ ∂_z \\
d \; ∂_y ∧ ∂_z \\
e \; ∂_z ∧ ∂_x \\
f \; ∂_x ∧ ∂_y \\
\end{bmatrix}^{♭♭}\end{split}\]
Distribute the musical operators
\[\begin{split}R^{♭♭} = \begin{bmatrix}
a \; ∂_t^♭ ∧ ∂_x^♭ \\
b \; ∂_t^♭ ∧ ∂_y^♭ \\
c \; ∂_t^♭ ∧ ∂_z^♭ \\
d \; ∂_y^♭ ∧ ∂_z^♭ \\
e \; ∂_z^♭ ∧ ∂_x^♭ \\
f \; ∂_x^♭ ∧ ∂_y^♭ \\
\end{bmatrix}\end{split}\]
Expand
\[\begin{split}R^{♭♭} = \begin{bmatrix}
a \; η_{tμ} d^μ ∧ η_{xμ} d^μ \\
b \; η_{tμ} d^μ ∧ η_{yμ} d^μ \\
c \; η_{tμ} d^μ ∧ η_{zμ} d^μ \\
d \; η_{yμ} d^μ ∧ η_{zμ} d^μ \\
e \; η_{zμ} d^μ ∧ η_{xμ} d^μ \\
f \; η_{xμ} d^μ ∧ η_{yμ} d^μ \\
\end{bmatrix}\end{split}\]
Identify non-zero terms
\[\begin{split}R^{♭♭} = \begin{bmatrix}
a \; η_{tt} dt ∧ η_{xx} dx \\
b \; η_{tt} dt ∧ η_{yy} dy \\
c \; η_{tt} dt ∧ η_{zz} dz \\
d \; η_{yy} dy ∧ η_{zz} dz \\
e \; η_{zz} dz ∧ η_{xx} dx \\
f \; η_{xx} dx ∧ η_{yy} dy \\
\end{bmatrix}\end{split}\]
Apply numerical values
\[\begin{split}R^{♭♭} = \left[ \begin{aligned}
- & a \; dt ∧ dx \\
- & b \; dt ∧ dy \\
- & c \; dt ∧ dz \\
& d \; dy ∧ dz \\
& e \; dz ∧ dx \\
& f \; dx ∧ dy \\
\end{aligned} \right]\end{split}\]
In this section, I flattne the first component using the free matrix
representation. The mixed tensor is obtained
by applying the flatternig operator \(\flat\):
\[\begin{split}R^{♭♯} = \begin{bmatrix}
a \; ∂_t ∧ ∂_x \\
b \; ∂_t ∧ ∂_y \\
c \; ∂_t ∧ ∂_z \\
d \; ∂_y ∧ ∂_z \\
e \; ∂_z ∧ ∂_x \\
f \; ∂_x ∧ ∂_y \\
\end{bmatrix}^{♭♯}
= \begin{bmatrix}
+ a \; dx^x ∧ ∂_t \\
+ b \; dx^y ∧ ∂_t \\
+ c \; dx^z ∧ ∂_t \\
- d \; dx^z ∧ ∂_y \\
- e \; dx^x ∧ ∂_z \\
- f \; dx^y ∧ ∂_x \\
\end{bmatrix}\end{split}\]
Calculations
Apply the musical operators
\[\begin{split}B^{♭♯} = \begin{bmatrix}
a \; ∂_t ∧ ∂_x \\
b \; ∂_t ∧ ∂_y \\
c \; ∂_t ∧ ∂_z \\
d \; ∂_y ∧ ∂_z \\
e \; ∂_z ∧ ∂_x \\
f \; ∂_x ∧ ∂_y \\
\end{bmatrix}^{♭♯}\end{split}\]
Distribute the musical operators to each matrix elements
\[\begin{split}B^{♭♯} = \begin{bmatrix}
a \; (∂_t ∧ ∂_x)^{♭♯} \\
b \; (∂_t ∧ ∂_y)^{♭♯} \\
c \; (∂_t ∧ ∂_z)^{♭♯} \\
d \; (∂_y ∧ ∂_z)^{♭♯} \\
e \; (∂_z ∧ ∂_x)^{♭♯} \\
f \; (∂_x ∧ ∂_y)^{♭♯} \\
\end{bmatrix}\end{split}\]
Distribute the musical operators
\[\begin{split}B^{♭♯} = \begin{bmatrix}
a \; (∂_t^♭ ∧ ∂_x^♯) \\
b \; (∂_t^♭ ∧ ∂_y^♯) \\
c \; (∂_t^♭ ∧ ∂_z^♯) \\
d \; (∂_y^♭ ∧ ∂_z^♯) \\
e \; (∂_z^♭ ∧ ∂_x^♯) \\
f \; (∂_x^♭ ∧ ∂_y^♯) \\
\end{bmatrix}\end{split}\]
Apply the musical operators
\[\begin{split}B^{♭♯} = \begin{bmatrix}
a \; η_{tγ} dx^γ ∧ ∂_x^♯ \\
b \; η_{tγ} dx^γ ∧ ∂_y^♯ \\
c \; η_{tγ} dx^γ ∧ ∂_z^♯ \\
d \; η_{yγ} dx^γ ∧ ∂_z^♯ \\
e \; η_{zγ} dx^γ ∧ ∂_x^♯ \\
f \; η_{xγ} dx^γ ∧ ∂_y^♯ \\
\end{bmatrix}\end{split}\]
Identify the non-zero terms of the Minkowski metric
\[\begin{split}B^{♭♯} = \begin{bmatrix}
a \; η_{tt} dx^t ∧ ∂_x \\
b \; η_{tt} dx^t ∧ ∂_y \\
c \; η_{tt} dx^t ∧ ∂_z \\
d \; η_{yy} dx^y ∧ ∂_z \\
e \; η_{zz} dx^z ∧ ∂_x \\
f \; η_{xx} dx^x ∧ ∂_y \\
\end{bmatrix}\end{split}\]
Use the numerical values of the Minkowski metric
\[\begin{split}B^{♭♯} = \begin{bmatrix}
+ a \; dx^t ∧ ∂_x \\
+ b \; dx^t ∧ ∂_y \\
+ c \; dx^t ∧ ∂_z \\
- d \; dx^y ∧ ∂_z \\
- e \; dx^z ∧ ∂_x \\
- f \; dx^x ∧ ∂_y \\
\end{bmatrix}\end{split}\]
Taking into account the symetric property of \(dx^t ∧ ∂_x\), \(dx^t
∧ ∂_y\), and \(dx^t ∧ ∂_z\), as well the antisymetric property of
\(dx^x ∧ ∂_y\), \(dx^y ∧ ∂_z\), and \(dx^z ∧ ∂_x\)
demonstrated above, this results in:
\[\begin{split}R^{♭♯} = \frac{1}{2} \begin{bmatrix}
& + a \; dx^t ∧ ∂_x & + b \; dx^t ∧ ∂_y & + c \; dx^t ∧ ∂_z \\
+ a \; dx^x ∧ ∂_t & & + f \; dx^x ∧ ∂_y & - e \; dx^x ∧ ∂_z \\
+ b \; dx^y ∧ ∂_t & - f \; dx^y ∧ ∂_x & & + d \; dx^y ∧ ∂_z \\
+ c \; dx^z ∧ ∂_t & + e \; dx^z ∧ ∂_x & - d \; dx^z ∧ ∂_y & \\
\end{bmatrix}\end{split}\]
In this section, I raise the indice using the free matrix notaion. The mixed
tensor is obtained by applying the flatternig operator \(\flat\):
\[\begin{split}R^{♯♭} = \begin{bmatrix}
a \; ∂_t ∧ ∂_x \\
b \; ∂_t ∧ ∂_y \\
c \; ∂_t ∧ ∂_z \\
d \; ∂_y ∧ ∂_z \\
e \; ∂_z ∧ ∂_x \\
f \; ∂_x ∧ ∂_y \\
\end{bmatrix}^{♯♭}
= \begin{bmatrix}
- a \; ∂_t ∧ dx \\
- b \; ∂_t ∧ dy \\
- c \; ∂_t ∧ dz \\
- d \; ∂_y ∧ dz \\
- e \; ∂_z ∧ dx \\
- f \; ∂_x ∧ dy \\
\end{bmatrix}\end{split}\]
Calculations
Apply the musical operators
\[\begin{split}B^{♯♭} = \begin{bmatrix}
a \; ∂_t ∧ ∂_x \\
b \; ∂_t ∧ ∂_y \\
c \; ∂_t ∧ ∂_z \\
d \; ∂_y ∧ ∂_z \\
e \; ∂_z ∧ ∂_x \\
f \; ∂_x ∧ ∂_y \\
\end{bmatrix}^{♯♭}\end{split}\]
Distribute the musical operators to each matrix elements
\[\begin{split}B^{♯♭} = \begin{bmatrix}
a \; (∂_t ∧ ∂_x)^{♯♭} \\
b \; (∂_t ∧ ∂_y)^{♯♭} \\
c \; (∂_t ∧ ∂_z)^{♯♭} \\
d \; (∂_y ∧ ∂_z)^{♯♭} \\
e \; (∂_z ∧ ∂_x)^{♯♭} \\
f \; (∂_x ∧ ∂_y)^{♯♭} \\
\end{bmatrix}\end{split}\]
Distribute the musical operators
\[\begin{split}B^{♯♭} = \begin{bmatrix}
a \; (∂_t^♯ ∧ ∂_x^♭) \\
b \; (∂_t^♯ ∧ ∂_y^♭) \\
c \; (∂_t^♯ ∧ ∂_z^♭) \\
d \; (∂_y^♯ ∧ ∂_z^♭) \\
e \; (∂_z^♯ ∧ ∂_x^♭) \\
f \; (∂_x^♯ ∧ ∂_y^♭) \\
\end{bmatrix}\end{split}\]
Apply and expand
\[\begin{split}B^{♯♭} = \begin{bmatrix}
a \; ∂_t ∧ η_{xγ} dx^γ \\
b \; ∂_t ∧ η_{yγ} dx^γ \\
c \; ∂_t ∧ η_{zγ} dx^γ \\
d \; ∂_y ∧ η_{zγ} dx^γ \\
e \; ∂_z ∧ η_{xγ} dx^γ \\
f \; ∂_x ∧ η_{yγ} dx^γ \\
\end{bmatrix}\end{split}\]
The metric tensor can be taken out due to mulilinearity
\[\begin{split}B^{♯♭} = \begin{bmatrix}
a \; η_{xγ} ∂_t ∧ dx^γ \\
b \; η_{yγ} ∂_t ∧ dx^γ \\
c \; η_{zγ} ∂_t ∧ dx^γ \\
d \; η_{zγ} ∂_y ∧ dx^γ \\
e \; η_{xγ} ∂_z ∧ dx^γ \\
f \; η_{yγ} ∂_x ∧ dx^γ \\
\end{bmatrix}\end{split}\]
Most terms of the Minkowski metric are zero
\[\begin{split}R^{♯♭} = \begin{bmatrix}
a \; η_{xx} ∂_t ∧ dx^x \\
b \; η_{yy} ∂_t ∧ dx^y \\
c \; η_{zz} ∂_t ∧ dx^z \\
d \; η_{zz} ∂_y ∧ dx^z \\
e \; η_{xx} ∂_z ∧ dx^x \\
f \; η_{yy} ∂_x ∧ dx^y \\
\end{bmatrix}\end{split}\]
Use the numerical values of the Minkowski metric
\[\begin{split}R^{♯♭} = \begin{bmatrix}
- a \; ∂_t ∧ dx^x \\
- b \; ∂_t ∧ dx^y \\
- c \; ∂_t ∧ dx^z \\
- d \; ∂_y ∧ dx^z \\
- e \; ∂_z ∧ dx^x \\
- f \; ∂_x ∧ dx^y \\
\end{bmatrix}\end{split}\]
Taking into account the symetric property of \(∂_t ∧ dx^x\), \(∂_t ∧
dx^y\), and \(∂_t ∧ dx^z\), as well the antisymetric property of \(∂_x ∧
dx^y\), \(∂_ey ∧ dx^z\), and \(∂_z ∧ dx^x\) demonstrated above, this
results in:
\[\begin{split}R^{♯♭} = \frac{1}{2} \begin{bmatrix}
& - a \; ∂_t ∧ dx & - b \; ∂_t ∧ dy & - c \; ∂_t ∧ dz \\
- a \; ∂_x ∧ dt & & - f \; ∂_x ∧ dy & + e \; ∂_x ∧ dz \\
- b \; ∂_y ∧ dt & + f \; ∂_y ∧ dx & & - d \; ∂_y ∧ dz \\
- c \; ∂_z ∧ dt & - e \; ∂_z ∧ dx & + d \; ∂_z ∧ dy & \\
\end{bmatrix}\end{split}\]
The purpose here is to determine the symmetries of the mixed exterior product.
Calculations are tedious, but permit to verify that everything works as it
should as the quantities are encountered when Deriving the Faraday Tensor from the 1865 Maxwell’s Equations. The discussion is often avoided, but it is
nice to settle it. This is important when performing matrix multiplications
since per convention, matrices are \(♯♭\) tensors organized in tables
following the row-column convention. This is not critical when using Free matrix representation, but permits to fall back to this familiar
framework.
Applying the \(♭♯\) operators to flatten the first index of each basis
bivectors, we obtain:
The calculations in this section repeat the calculations of the previous
sections. The results servers as a test with respect to the former calculations
as the results should be fully consistent. We show this is indeed the case. We
apply the \(♯♭\) operators to flatten the second index of each basis
bivectors and obtain:
Taken together, we get the result consistent with the symmetries obtained for
the \(♭♯\), thus strongly suggesting the results regarding the symmetries of
the mixeed exterior product are correct.
\(\mathfrak{so}(1,3)\) Lie algebra of the Lorentz group#
Matrices are organized in column of vectors and therefore type \(♯♭\)
tensors, written \(M_μ{}^ν\) in abstract index notation. The objects can
take vectors \(v^ν\) as input and output transformed vectors \(M_γ{}^ν
\: v^γ\).
The type \(♯♭\) row/column matrix representation of rotations is:
\[\begin{split}R^{♭♯} = \frac{1}{2} \begin{bmatrix}
& + a \; dx^t ∧ ∂_x & + b \; dx^t ∧ ∂_y & + c \; dx^t ∧ ∂_z \\
+ a \; dx^x ∧ ∂_t & & + f \; dx^x ∧ ∂_y & - e \; dx^x ∧ ∂_z \\
+ b \; dx^y ∧ ∂_t & - f \; dx^y ∧ ∂_x & & + d \; dx^y ∧ ∂_z \\
+ c \; dx^z ∧ ∂_t & + e \; dx^z ∧ ∂_x & - d \; dx^z ∧ ∂_y & \\
\end{bmatrix}\end{split}\]
Taking out the basis bivectors from Free matrix representation, we
trivially obtain the representation of the Lorentz group, as well as the
interpretation as a rotation in spacetime:
\[\begin{split}R^{♭♯} = \frac{1}{2} \begin{bmatrix}
& + a & + b & + c \\
+ a & & + f & - e \\
+ b & - f & & + d \\
+ c & + e & - d & \\
\end{bmatrix}\end{split}\]