Proving De Gua’s theorem with Clifford algebra

Proving De Gua’s theorem with Clifford algebra#

by Stéphane Haussler

I just watched yet another great video by Michael Penn about De Gua’s theorem. Since I had never heard of it and recently learned about Clifford Algebra as well as the Hodge dual, I decided I would have a go at it that way. It felt a proof should work out nicely, and it does!

../_images/de_guas_theorem_illustration.png

The theorem states that with an orthogonal corner \(O\) and triangles arranged as shown in the illustration, their areas follows this rule:

\[A^2_{ABC} = A^2_{OBC} + A^2_{OAC} + A^2_{OAB}\]

Don’t hesitate to open an issue in the Theoretical Universe repository if something is not as it should. You can also correct directly and I will definitely conside merging your changes.

Taking the Clifford Product#

Take the Clifford product of vectors \(\mathbf{CA}\) and \(\mathbf{CB}\):

\[\begin{split}\mathbf{CA\;CB} &= (\mathbf{CO + OA}) (\mathbf{CO + OB}) \\ &= \mathbf{CO\;CO} + \mathbf{CO\;OB} + \mathbf{OA\;CO} + \mathbf{OA\;OB} \\\end{split}\]

Expand the Cifford product on both sides into dot and wedge products:

\[\begin{split}\mathbf{CA} \cdot \mathbf{CB} + \mathbf{CA} \wedge \mathbf{CB} = & \mathbf{CO} \cdot \mathbf{CO} + \mathbf{CO} \wedge \mathbf{CO} + \\ & \mathbf{CO} \cdot \mathbf{OB} + \mathbf{CO} \wedge \mathbf{OB} + \\ & \mathbf{OA} \cdot \mathbf{CO} + \mathbf{OA} \wedge \mathbf{CO} + \\ & \mathbf{OA} \cdot \mathbf{OB} + \mathbf{OA} \wedge \mathbf{OB} + \\\end{split}\]

\(\mathbf{CO}\) is aligned with itself and its wedge product is therefore zero (its dot product is not zero). Since we make the hypothesis of a right corner in \(O\), all other dot products are zero.

\[\begin{split}\mathbf{CA} \cdot \mathbf{CB} + \mathbf{CA} \wedge \mathbf{CB} = & + \mathbf{CO} \cdot \mathbf{CO} \\ & + \mathbf{CO} \wedge \mathbf{OB} \\ & + \mathbf{OA} \wedge \mathbf{CO} \\ & + \mathbf{OA} \wedge \mathbf{OB} \\\end{split}\]

Identifying the Bivector Part#

Isolate the bivector part:

\[\begin{split}\mathbf{CA} \wedge \mathbf{CB} = \mathbf{CO} \wedge \mathbf{OB} + \mathbf{OA} \wedge \mathbf{CO} + \mathbf{OA} \wedge \mathbf{OB} \\\end{split}\]

With reference to the illustration, we use the area \(A\) and basis vectors \(\mathbf{e}_i\):

\[\mathbf{CA} \wedge \mathbf{CB} = - A_{OCB} \; \mathbf{e_z} \wedge \mathbf{e_y} - A_{OAC} \; \mathbf{e_x} \wedge \mathbf{e_z} + A_{OAB} \; \mathbf{e_x} \wedge \mathbf{e_y}\]

Reorder:

\[\mathbf{CA} \wedge \mathbf{CB} = + A_{OCB} \; \mathbf{e_y} \wedge \mathbf{e_z} + A_{OAC} \; \mathbf{e_z} \wedge \mathbf{e_x} + A_{OAB} \; \mathbf{e_x} \wedge \mathbf{e_y}\]

Taking the Hodge Dual#

Take the Hodge dual of that last expression:

\[\star \mathbf{CA} \wedge \mathbf{CB} = + A_{OCB} \; \star \mathbf{e_y} \wedge \mathbf{e_z} + A_{OAC} \; \star \mathbf{e_z} \wedge \mathbf{e_x} + A_{OAB} \; \star \mathbf{e_x} \wedge \mathbf{e_y}\]

Which results in:

\[\mathbf{CA} \times \mathbf{CB} = + A_{OCB} \; \mathbf{e_x} + A_{OAC} \; \mathbf{e_y} + A_{OAB} \; \mathbf{e_z}\]

Consider the unit vector \(\mathbf{n}\) normal to the \(ABC\) surface.

\[A_{ABC} \; \mathbf{n} = + A_{OCB} \; \mathbf{e_x} + A_{OAC} \; \mathbf{e_y} + A_{OAB} \; \mathbf{e_z}\]

Taking the squared norm and obtain De Gua’s theorem:

\[A^2_{ABC} = A^2_{OBC} + A^2_{OAC} + A^2_{OAB}\]