4–forms (4D volumes)#

by Stéphane Haussler

This article is part of a series of systematic calculations of combinations of the Hodge star operator and the exterior derivative.

Here, we perform these calculations for a 4-form. A generic 4-form is denoted \(G^{♭♭♭♭} = \; g \; dt ∧ dx ∧ dy ∧ dz\).

\(⋆G^{♭♭♭♭}\)#

Applying the Hodge operator results directly in:

\[⋆ G^{♭♭♭♭} = - g\]

\(dG^{♭♭♭♭}\)#

Applying the exterior derivative results directly in:

\[d G^{♭♭♭♭} = 0\]

\(d⋆G^{♭♭♭♭}\)#

Applying the exterior derivative results directly in:

\[d ⋆ G^{♭♭♭♭} = - ∂_t G dt - ∂_x G dx - ∂_y G dy - ∂_z G dz\]

\(⋆dG^{♭♭♭♭}\)#

Applying the Hodge star results directly in:

\[⋆ d G^{♭♭♭♭} = 0\]

\(⋆d⋆G^{♭♭♭♭}\)#

Applying the Hodge star results directly in:

\[\begin{split}⋆ d ⋆ G^{♭♭♭♭} = \left[ \begin{aligned} - ∂_t G dx ∧ dy ∧ dz \\ - ∂_x G dt ∧ dy ∧ dz \\ - ∂_y G dt ∧ dz ∧ dx \\ - ∂_z G dt ∧ dx ∧ dy \\ \end{aligned} \right]\end{split}\]

\(d⋆dG^{♭♭♭♭}\)#

Applying the exterior derivative results directly in:

\[d ⋆ d G^{♭♭♭♭} = 0\]