\[\begin{split}d⋆d T^♭ = \left[ \begin{alignedat}{7}
( & + ∂_x^2 A^t & + ∂_y^2 A^t & + ∂_z^2 A^t & + ∂_t ∂_x A^x & + ∂_t ∂_y A^y & + ∂_t ∂_z A^z & ) \; dx ∧ dx ∧ dy \\
( & + ∂_t^2 A^x & - ∂_y^2 A^x & - ∂_z^2 A^x & + ∂_t ∂_x A^t & + ∂_x ∂_y A^y & + ∂_z ∂_x A^z & ) \; dt ∧ dy ∧ dz \\
( & + ∂_t^2 A^y & - ∂_x^2 A^y & - ∂_z^2 A^y & + ∂_t ∂_y A^t & + ∂_y ∂_z A^z & + ∂_x ∂_y A^x & ) \; dt ∧ dz ∧ dx \\
( & + ∂_t^2 A^z & - ∂_x^2 A^z & - ∂_y^2 A^z & + ∂_t ∂_z A^t & + ∂_z ∂_x A^x & + ∂_y ∂_z A^y & ) \; dt ∧ dx ∧ dy \\
\end{alignedat} \right]\end{split}\]
Calculations
Apply the exterior derivative to all
\[\begin{split}d ⋆ d T^♭ = d \left[ \begin{alignedat}{4}
(+ & ∂_z A^y & - & ∂_y A^z &) \; dt ∧ dx \\
(+ & ∂_x A^z & - & ∂_z A^x &) \; dt ∧ dy \\
(+ & ∂_y A^x & - & ∂_x A^y &) \; dt ∧ dz \\
(+ & ∂_x A^t & + & ∂_t A^x &) \; dy ∧ dz \\
(+ & ∂_y A^t & + & ∂_t A^y &) \; dz ∧ dx \\
(+ & ∂_z A^t & + & ∂_t A^z &) \; dx ∧ dy \\
\end{alignedat} \right]\end{split}\]
Collapse permutations
\[\begin{split}d ⋆ d T^♭ = Π d \left[ \begin{alignedat}{4}
(+ & ∂_z A^y & - & ∂_y A^z &) \; dt ∧ dx \\
(+ & ∂_x A^t & + & ∂_t A^x &) \; dy ∧ dz \\
\end{alignedat} \right]\end{split}\]
Apply the exterior derivative
\[\begin{split}d ⋆ d T^♭ = Π d \left[ \begin{alignedat}{4}
∂_y (+ & ∂_z A^y & - & ∂_y A^z &) \; dy ∧ dt ∧ dx \\
∂_z (+ & ∂_z A^y & - & ∂_y A^z &) \; dz ∧ dt ∧ dx \\
∂_t (+ & ∂_x A^t & + & ∂_t A^x &) \; dt ∧ dy ∧ dz \\
∂_x (+ & ∂_x A^t & + & ∂_t A^x &) \; dx ∧ dy ∧ dz \\
\end{alignedat} \right]\end{split}\]
Rearange
\[\begin{split}d ⋆ d T^♭ = Π d \left[ \begin{alignedat}{4}
(- & ∂_y^2 A^z & + & ∂_y ∂_z A^y & ) \; dt ∧ dx ∧ dy \\
(- & ∂_z^2 A^y & + & ∂_y ∂_z A^z & ) \; dt ∧ dz ∧ dx \\
(+ & ∂_t^2 A^x & + & ∂_t ∂_x A^t & ) \; dt ∧ dy ∧ dz \\
(+ & ∂_x^2 A^t & + & ∂_t ∂_x A^x & ) \; dx ∧ dy ∧ dz \\
\end{alignedat} \right]\end{split}\]
Rearange
\[\begin{split}d ⋆ d T^♭ = Π d \left[ \begin{alignedat}{4}
(+ & ∂_x^2 A^t & + & ∂_t ∂_x A^x & ) \; dx ∧ dy ∧ dz \\
(+ & ∂_t^2 A^x & + & ∂_t ∂_x A^t & ) \; dt ∧ dy ∧ dz \\
(- & ∂_z^2 A^y & + & ∂_y ∂_z A^z & ) \; dt ∧ dz ∧ dx \\
(- & ∂_y^2 A^z & + & ∂_y ∂_z A^y & ) \; dt ∧ dx ∧ dy \\
\end{alignedat} \right]\end{split}\]
Expand permutations
\[\begin{split}d ⋆ d T^♭ = \left[ \begin{alignedat}{4}
(+ & ∂_x^2 A^t & + & ∂_t ∂_x A^x & ) \; dx ∧ dy ∧ dz \\
(+ & ∂_y^2 A^t & + & ∂_t ∂_y A^y & ) \; dx ∧ dz ∧ dx \\
(+ & ∂_z^2 A^t & + & ∂_t ∂_z A^z & ) \; dx ∧ dx ∧ dy \\
%
(+ & ∂_t^2 A^x & + & ∂_t ∂_x A^t & ) \; dt ∧ dy ∧ dz \\
(+ & ∂_t^2 A^y & + & ∂_t ∂_y A^t & ) \; dt ∧ dz ∧ dx \\
(+ & ∂_t^2 A^z & + & ∂_t ∂_z A^t & ) \; dt ∧ dx ∧ dy \\
%
(- & ∂_z^2 A^y & + & ∂_y ∂_z A^z & ) \; dt ∧ dz ∧ dx \\
(- & ∂_x^2 A^z & + & ∂_z ∂_x A^x & ) \; dt ∧ dx ∧ dy \\
(- & ∂_y^2 A^x & + & ∂_x ∂_y A^y & ) \; dt ∧ dy ∧ dz \\
%
(- & ∂_y^2 A^z & + & ∂_y ∂_z A^y & ) \; dt ∧ dx ∧ dy \\
(- & ∂_z^2 A^x & + & ∂_z ∂_x A^z & ) \; dt ∧ dy ∧ dz \\
(- & ∂_x^2 A^y & + & ∂_x ∂_y A^x & ) \; dt ∧ dz ∧ dx \\
\end{alignedat} \right]\end{split}\]
Simplify and conclude
\[\begin{split}d ⋆ d T^♭ = \left[ \begin{alignedat}{7}
( & + ∂_x^2 A^t & + ∂_y^2 A^t & + ∂_z^2 A^t & + ∂_t ∂_x A^x & + ∂_t ∂_y A^y & + ∂_t ∂_z A^z & ) \; dx ∧ dx ∧ dy \\
( & + ∂_t^2 A^x & - ∂_y^2 A^x & - ∂_z^2 A^x & + ∂_t ∂_x A^t & + ∂_x ∂_y A^y & + ∂_z ∂_x A^z & ) \; dt ∧ dy ∧ dz \\
( & + ∂_t^2 A^y & - ∂_x^2 A^y & - ∂_z^2 A^y & + ∂_t ∂_y A^t & + ∂_y ∂_z A^z & + ∂_x ∂_y A^x & ) \; dt ∧ dz ∧ dx \\
( & + ∂_t^2 A^z & - ∂_x^2 A^z & - ∂_y^2 A^z & + ∂_t ∂_z A^t & + ∂_z ∂_x A^x & + ∂_y ∂_z A^y & ) \; dt ∧ dx ∧ dy \\
\end{alignedat} \right]\end{split}\]