Exponential map#

by Stéphane Haussler

Warning

Draft

2D Euclidean space#

Infinitesimal rotations in 2D Euclidean space are expressed as:

\[R^{♭♭} = θ \: dx ∧ dy\]

We take the exponential map:

\[e^{R^{♭♭}} = \mathbb{1} + R^{♭♭} + \frac{1}{2!} \left( R^{♭♭} \right)^2 + \frac{1}{3!} \left( R^{♭♭} \right)^3 + \cdots\]

We have:

\[\begin{split}dx \⌟ \mathbb{1} &= dx \\ dy \⌟ \mathbb{1} &= dy \\\end{split}\]

\[\begin{split}dx \⌟ R^{♭♭} = + θ dy \\ dy \⌟ R^{♭♭} = - θ dx \\\end{split}\]

\[\begin{split}dx \⌟ \left(R^{♭♭}\right)^2 &= - θ^2 dx \\ dy \⌟ \left(R^{♭♭}\right)^2 &= - θ^2 dy \\\end{split}\]

\[\begin{split}dx \⌟ \left(R^{♭♭}\right)^3 &= - θ^3 dy \\ dy \⌟ \left(R^{♭♭}\right)^3 &= + θ^3 dx \\\end{split}\]

We then get:

\[\begin{split}dx \⌟ e^{θ dx ∧ dy} = \begin{bmatrix} \left( + 1 - \frac{1}{2!} θ^2 + \cdots \right) dx \\ \left( + θ - \frac{1}{3!} θ^3 + \cdots \right) dy \\ \end{bmatrix} = \begin{bmatrix} + cos(θ) dx \\ + sin(θ) dy \\ \end{bmatrix}\end{split}\]
\[\begin{split}dy \⌟ e^{θ dx ∧ dy} = \begin{bmatrix} \left( - θ + \frac{1}{3!} θ^3 + \cdots) \right) dx \\ \left( + 1 - \frac{1}{2!} θ^2 + \cdots) \right) dy \\ \end{bmatrix} = \begin{bmatrix} - sin(θ) dx \\ + cos(θ) dy \\ \end{bmatrix}\end{split}\]

3D Euclidean space#

Commutation relations#

\[\begin{split}L_x &= dy ∧ dz \\ L_y &= dz ∧ dx \\ L_z &= dx ∧ dy \\\end{split}\]
\[\begin{split}\left[ L_x, L_y \right] &= L_x L_y - L_y L_x = L_z \\ &= dy ∧ dz \⌟ dz ∧ dx - dz ∧ dx \⌟ dy ∧ dz = dx ∧ dy\end{split}\]
\[\begin{split}\small V^{♭} ⌟ \left[ dy ∧ dz, dz ∧ dx \right] &= \begin{bmatrix} a dx \\ b dy \\ c dz \end{bmatrix} \⌟ dy ∧ dz \⌟ dz ∧ dx - \begin{bmatrix} a dx \\ b dy \\ c dz \end{bmatrix} \⌟ dz ∧ dx \⌟ dy ∧ dz \\ &= \begin{bmatrix} + b dz \\ - c dy \end{bmatrix} \⌟ dz ∧ dx - \begin{bmatrix} - a dz \\ + c dx \end{bmatrix} \⌟ dy ∧ dz \\ &= + b dx - a dy \\ &= \begin{bmatrix} + b dx \\ - a dy \\ \end{bmatrix}\end{split}\]
\[\begin{split}V^{♭} ⌟ \left[ dx ∧ dy \right] &= \begin{bmatrix} a \: dx \\ b \: dy \\ c \: dz \\ \end{bmatrix} \⌟ dx ∧ dy \\ &= \begin{bmatrix} - b \: dx \\ + a \: dy \\ \end{bmatrix}\end{split}\]