0–forms (functions)

0–forms (functions)#

by Stéphane Haussler

This article is part of a series of systematic calculations of combinations of the Hodge star operator and the exterior derivative.

Here, we perform these calculations for a function. A generic scalar field is denoted \(f\).

\(⋆f\)#

Applying the Hodge star results directly in:

\[⋆ f = - f dt ∧ dx ∧ dy ∧ dz\]

\(df\)#

Applying the exterior derivative results directly in:

\[d f = ∂_t f dt + ∂_x f dx + ∂_y f dy + ∂_z f dz\]

\(d⋆f\)#

Applying the exterior derivative results directly in:

\[d ⋆ f = 0\]

\(⋆df\)#

Applying the Hodge star results directly in:

\[\begin{split}⋆ d f = \left[ \begin{aligned} ∂_t f dx ∧ dy ∧ dz \\ ∂_x f dt ∧ dy ∧ dz \\ ∂_y f dt ∧ dz ∧ dx \\ ∂_z f dt ∧ dx ∧ dy \\ \end{aligned} \right]\end{split}\]

\(⋆d⋆f\)#

Applying the Hodge star results directly in:

\[⋆ d ⋆ f = 0\]

\(d⋆df\)#

\[d ⋆ d f = (∂_t^2 - ∂_x^2 - ∂_y^2 - ∂_z^2) f \; dz ∧ dt ∧ dx ∧ dy\]